

ЭНЕРГЕТИЧЕСКИЕ БАРЬЕРЫ ИСКРОЗАЩИТЫ (НОРМИРУЮЩИЕ ПРЕОБРАЗОВАТЕЛИ) С ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКОЙ

КОРУНД - М5

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ (РЭ) КТЖЛ.425624.002.01 РЭ

Nº	СОДЕРЖАНИЕ	Стр.
1	введение	3
2	НАЗНАЧЕНИЕ	3
3	ТЕХНИЧЕСКИЕ ДАННЫЕ	3
4	КОМПЛЕКТНОСТЬ	5
5	УСТРОЙСТВО И РАБОТА, ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ	5
6	МАРКИРОВКА	5
7	ТАРА И УПАКОВКА	6
8	ОБЩИЕ УКАЗАНИЯ	6
9	УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ	6
10	ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ ПРИ МОНТАЖЕ БАРЬЕРОВ	6
11	ПОРЯДОК УСТАНОВКИ	7
12	ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ ПРИ ЭКСПЛУАТАЦИИ БАРЬЕРОВ	7
13	МЕТОДИКА ПОВЕРКИ	8
1/1	ΠΡΔΒΙΛΠΔ ΥΡΔΗΕΗΙΛЯ ΙΛ ΤΡΔΗΛΠΟΡΤΙΛΡΟΒΔΗΙΛЯ	10

1. ВВЕДЕНИЕ

Руководство по эксплуатации по эксплуатации (в дальнейшем РЭ) содержит технические данные, описание принципа действия и устройства, а также сведения, необходимые для правильной эксплуатации барьеров искрозащиты (нормирующих преобразователей) с гальванической развязкой КОРУНД-М5.

ВНИМАНИЕ!

Энергетические барьеры искрозащиты Корунд-М5 имеют неразборную конструкцию. Проводить ремонт и восстановление барьеров имеет право только предприятие-изготовитель.

ВНИМАНИЕ!

Барьеры предназначены для размещения вне взрывоопасных зон.

2. НАЗНАЧЕНИЕ

Энергетический барьер искрозащиты (нормирующий преобразователь) Корунд-М5 предназначен для применения в отраслях промышленности, связанных с получением, переработкой, использованием и хранением взрыво- и пожароопасных веществ и продуктов, а также в иных отраслях.

Корунд-М5 предназначен для организации питания и искрозащиты сигнальных цепей взрывозащищенных двухпроводных датчиков, формирующих унифицированный информативный сигнал постоянного тока 4-20мА.

Корунд-М5 осуществляют гальваническую развязку между источником и приемником измерительного сигнала, а также между измерительными цепями и цепями питания. Это позволяет отказаться от шины заземления и повысить помехоустойчивость при передаче измерительных сигналов.

Барьеры Корунд-М5 относятся к средствам измерения.

3. ТЕХНИЧЕСКИЕ ДАННЫЕ

- 3.1. Корунд-М5 является одноканальным.
- 3.2. Корунд-М5 имеет входную искробезопасную цепь уровня «ia», маркировку по взрывозащите [Exia]IIC/IIB, соответствует требованиям ГОСТ Р 51330.10-99 и предназначен для работы с датчиками с унифицированным выходным сигналом постоянного тока, имеющими вид взрывозащиты «искробезопасная электрическая цепь».
- 3.3. Допустимые значения максимального выходного напряжения Uo, максимального выходного тока I_{O_i} а также предельные параметры внешних искробезопасных электрических цепей не должны превышать значений, приведенных в Таблице 1:

Таблица 1

Уровень взрывозащиты	Подгруппа	Максимальное выходное напряжение Uo, B			іальная мкость, Со, «Ф	внешня	иальная я индук- ь, Lo, мГн IIB
[Exia]	IIC/IIB	24,0	0,12	0,11	0,75	1,5	6,0

где IIC, IIB - подгруппы взрывозащищенного электрооборудования.

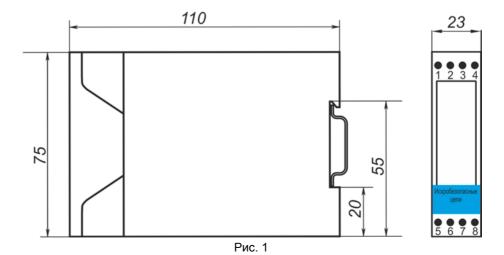

3.4. В зависимости от исполнения Корунд-М5 обеспечивает выходной сигнал 4.20 мА; 0-5 мА. Обозначения барьеров при заказе должно соответствовать таблице 2.

Таблица 2

Наименование барьера	Обозначение	Входной сигнал	Выходной сигнал
Vonus ME	КТЖЛ.425624.002.01	4-20 мА	4-20 мА
Корунд-М5	КТЖЛ.425624.002.01-01	4-20 MA	0-5 мА

- 3.5. Максимальное выходное напряжение (U $_0$) на искробезопасных входных клеммах не превышает значений 24~B.
 - 3.6. Напряжение на искробезопасном входе:
- не более 22,5 В при нижнем предельном значении входного сигнала (4 мА);
- не менее 16,5 В при верхнем предельном значении входного сигнала (20 мА).
- 3.7. Наибольшие допустимые значения пульсации напряжения на искробезопасных клеммах Корунд-М5 не превышают 0,2 % измеренного значения.
 - 3.8. Выходной сигнал Корунд-М5: 4-20 мА или 0-5 мА в зависимости от исполнения.
 - 3.9. Выходная невзрывозащищенная цепь рассчитана на работу с нагрузкой не более 0.6 кОм (для сигнала

- 4-20 мА) и не более 2 кОм (для сигнала 0-5 мА). Влияние изменения нагрузки в указанных пределах не превышает 0.1% от диапазона изменения выходного сигнала.
- 3.10. Наибольшие допустимые значения пульсации по невзрывозащищенной выходной цепи Корунд-М5 не превышают 0,2 % от диапазона измерений выходного сигнала.
- 3.11. Предел допускаемой основной приведенной погрешности преобразования входного сигнала, выраженный в процентах от диапазона изменения выходного сигнала, не более ± 0,15 %.
 - 3.12. Питание Корунд-М5 осуществляется напряжением постоянного тока (24±0,48) В.
- 3.13. Мощность, потребляемая барьером не превышает 1,5 ВА при выходном сигнале 0-5 мА и 2 ВА при выходном сигнале 4-20 мА.
 - 3.14. Номинальный ток потребления Корунд-М5 не превышает 80 мА.
- 3.15. По устойчивости к климатическим воздействиям соответствуют исполнению УХЛ категории 3 по ГОСТ 15150, группы исполнения СЗ по ГОСТ Р 52931-2008, но для работы при температуре -10...+60°C.
- 3.16. Электрическое сопротивление изоляции между входными, выходными цепями и цепью питания Корунд-М5 составляет не менее 10 МОм при температуре окружающей среды плюс 25 °C и относительной влажности 98%.
- 3.17. Электрическая изоляция между входными и выходными цепями барьеров не допускает пробоя в течение 1 минуты при напряжении 1500 В при температуре 23±5°С и относительной влажности 80%.
- 3.18. Изменение значения выходного сигнала, вызванное изменением температуры окружающего воздуха, не превышает 0,1% от диапазона изменения выходного сигнала на каждые 10 °C.
- 3.19. Корунд-М5 является виброустойчивым и вибропрочным при воздействии синусоидальной вибрации в диапазоне частот 5-25 Гц и амплитудным смещением 0,1 мм, согласно ГОСТ Р 52931-2008 для группы исполнения L3.
- 3.20. Изменение значения выходного сигнала, вызванное воздействием вибрации, не превышает 0,1% диапазона изменения выходного сигнала.
 - 3.21. Корунд-М5 предназначен для эксплуатации в атмосфере II по ГОСТ 15150 при следующих условиях:
 - температура окружающей среды от -10 до + 60 °C
 - магнитные поля постоянного и переменного тока частотой (50 \pm 1) Гц, напряженностью до 400А/м любого направления и фазы;
 - относительная влажность 30 80 % во всем диапазоне температур.
 - 3.22. Барьеры в упаковке для транспортирования выдерживают воздействие:
 - вибраций по группе N2 по ГОСТ 52931-2008.
 - температур от минус 50 °C до плюс 50 °C по ГОСТ 52931-2008.
 - влажности до 98 % при температуре 35 °C без конденсации влаги.
 - 3.23. Барьеры относятся к однофункциональным изделиям.
- 3.24. Средняя наработка на отказ с учетом технического обслуживания, регламентируемого руководством по эксплуатации КТЖЛ.425624.002 РЭ 120000 часов.
 - 3.25. Среднее время восстановления работоспособного состояния барьер 2 часа.
 - 3.26. Средний срок службы 12 лет.
 - 3.27. Средний срок сохраняемости 3 года.
 - 3.28. Уровень помех, создаваемых при работе Корунд-М5, не превышает значения, установленного ГОСТ 23511.
 - 3.29. Масса Корунд-М5 не превышает 120 г.
 - 3.30. Габаритные и присоединительные размеры и рабочее положение Корунд-М5 представлены на рис.1.

4. КОМПЛЕКТНОСТЬ

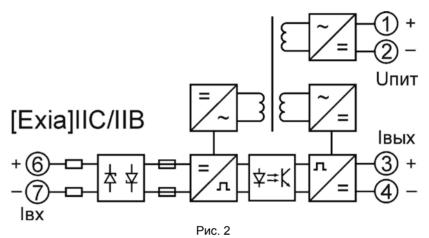

4.1. Комплект поставки Корунд-М5 должен соответствовать перечню таблицы 3

Таблица 3

Наименование	Обозначение	Количество
1. Барьер искрозащиты	Корунд-М5	1
2. Паспорт	КТЖЛ.425624.002 ПС	1
3. Руководство по эксплуатации	КТЖЛ.425624.002 РЭ	1 на партию до 20 шт, поставляемых в один адрес

5. УСТРОЙСТВО И РАБОТА БАРЬЕРОВ. ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ.

- 5.1. Барьеры Корунд-М5 обеспечивают взрывозащищенность благодаря ограничению электрической мощности в цепях связи с датчиками и другими техническими средствами, размещенными во взрывоопасной зоне.
 - 5.2. Функциональная схема барьера Корунд-М5 представлена на рис.2.

Функциональная схема Корунд-М5

5.3. Принцип работы Корунд-М5 основан на преобразовании входного сигнала постоянного тока в цифровой код с последующей передачей его через оптроны в гальванически отделенный каскад. В выходном каскаде осуществляется обратное преобразование кода в напряжение и далее в выходной ток.

6. МАРКИРОВКА

- 6.1. На табличке, прикрепленной к боковой стороне барьера, имеются следующие знаки и надписи:
 - товарный знак предприятия-изготовителя;
 - наименование и условное обозначение барьера;
 - порядковый номер барьера по системе нумерации завода-изготовителя;
 - название органа по сертификации и номер сертификата;
 - диапазоны изменения входного и выходного сигналов;
- значение максимального выходного тока I₀, максимального выходного напряжения U₀ и величина допустимого напряжения Uмах, при котором сохраняется работоспособность барьера;
 - исполнение корпуса барьера DIN;
 - схема внешних электрических соединений с упрощенной функциональной схемой барьер;
 - значения параметров внешней искробезопасной цепи.
- 6.2. У мест присоединения внешних электрических цепей барьера нанесены номера контактов колодки, а также следующие надписи: "Искробезопасная цепь", "Uп", "Івых", "+", "-", "ПИТАНИЕ".
- 6.3. На транспортной таре в соответствии с ГОСТ 14192 должны быть нанесены несмываемой краской основные, дополнительные и информационные надписи, а также манипуляционные знаки, означающие ХРУПКОЕ, ОСТОРОЖНО, ВЕРХ, БЕРЕЧЬ ОТ ВЛАГИ, ОТКРЫВАТЬ ЗДЕСЬ.
- 6.4. Способы нанесения маркировки на таблички барьера обеспечивают сохранность и четкость изображения в течение всего срока службы.

Примечание. Допускается по п.6.1. наносить отдельно порядковый номер.

7. ТАРА И УПАКОВКА

- 7.1. Упаковка барьеров должна обеспечивать их сохранность при хранении и транспортировании.
- 7.2. Упаковку барьеров производить по чертежам предприятия-изготовителя.
- 7.3. Каждый барьер должен быть уложен в потребительскую тару картонную коробку, изготовленную из гофрированного картона ГОСТ 7376 или картона коробочного ГОСТ 7933.
 - 7.4. Барьер должен быть уплотнен в коробке с помощью прокладок.
 - 7.5. Паспорт должен быть вложен в потребительскую тару совместно с барьером.
 - 7.6. Количество барьеров в потребительской таре не более 10 штук.
- 7.7. Перед отгрузкой упакованные коробки с барьерами должны быть уложены в транспортную тару дощатые ящики типа Ш-1 ГОСТ 2991 или ГОСТ 3959. Пространство между стенками, дном, крышкой ящика и упаковочной коробкой должно быть заполнено амортизационным материалом или прокладками. Транспортная тара должна соответствовать требованиям ГОСТ 24634.
- 7.8. Эксплуатационная и товаросопроводительная документация должна быть упакована с применением упаковочных материалов ГОСТ 8828, согласно требованиям конструкторской документации и уложена на верхний слой уплотнительного материала транспортной тары.
 - 7.9. Масса транспортной тары не должна превышать 15 кг.

8. ОБЩИЕ УКАЗАНИЯ

- 8.1. При получении ящиков с барьерами установите сохранность тары. В случае ее повреждения следует составить акт и обратиться с рекламацией к транспортной организации.
- 8.2. В зимнее время ящики с барьерами распаковывают в отапливаемом помещении не менее чем через 6 часов после внесения их в помещение.
 - 8.3. Проверьте комплектность в соответствии с паспортом на барьер.
- 8.4. В паспорте на барьер необходимо указать дату ввода в эксплуатацию, номер акта и дату его утверждения руководством предприятия-потребителя. Рекомендуется сохранить паспорт, так как он является юридическим документом, при предъявлении рекламаций предприятию-изготовителю.
- 8.5. При получении барьера рекомендуется завести на него регистрационный лист, в котором должны быть указаны: наименование и номер барьера, наименование организации, поставившей барьер. В лист должны быть включены данные, касающиеся эксплуатации барьера, например: дата установки барьера, наименование организации устанавливающей барьер, место установки барьера, записи по обслуживанию с указанием имевших место неисправностей и их причин.

Предприятие-изготовитель заинтересовано в получении технической информации о работе барьеров. Все пожелания по усовершенствованию конструкции барьеров следует направлять в адрес предприятия-изготовителя.

9. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 9.1. По способу защиты человека от поражения электрическим током барьеры относятся к классу 01 по ГОСТ 12.2.007.0-75.
 - 9.2. Барьеры не требуют использования устройств заземления
- 9.3. Эксплуатация барьеров разрешается только при наличии инструкции по технике безопасности, утвержденной руководителем предприятия-потребителя.

10. ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ ПРИ МОНТАЖЕ БАРЬЕРОВ

- 10.1. Барьеры устанавливаются вне взрывоопасных зон помещений и наружных установок.
- 10.2. Прежде чем приступить к монтажу барьеров, необходимо осмотреть их. При этом необходимо проверить маркировку по взрывозащите, а также убедиться в целостности корпусов барьеров. Монтаж барьеров должен производиться в соответствии со схемой внешних соединений, представленной на рис. 3.
- 10.3. Параметры линии связи между барьером и взрывозащищенным электрооборудованием не должны превышать значений, указанных в табл.1. Линия связи может быть выполнена любым типом экранированного кабеля с медными проводами сечением не менее 0,35 мм² и должна соответствовать требованиям ПУЭ.
- 10.4. При монтаже барьеров необходимо руководствоваться настоящим РЭ, главой 3.4. ПЭЭП, главой 7.3 ПУЭ и другими документами, действующими в данной отрасли промышленности.

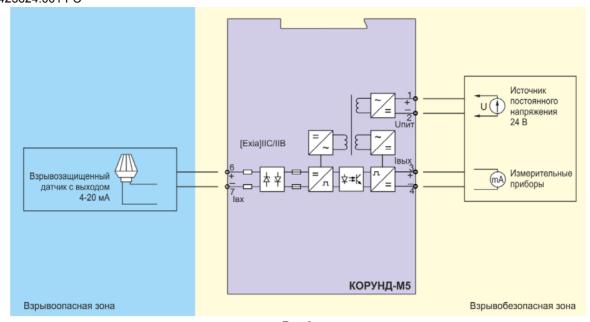


Рис.3 Схема внешних соединений Корунд-М5

11. ПОРЯДОК УСТАНОВКИ

- 11.1. Барьеры монтируются в положении, указанном на рис.1 настоящего РЭ.
- 11.2. Барьеры крепятся на DIN-рейку TS35 с помощью специального замка, расположенного на корпусе. Кабели искробезопасных цепей и обычных невзрывозащищенных электрических цепей барьеров должны быть расположены по разные стороны их корпуса. Внешние провода подключаются к соответствующим гнездам колодок с винтовым соединением.
 - 11.3. При выборе места установки необходимо учитывать следующее:
 - места установки барьеров должны обеспечивать удобные условия для обслуживания и демонтажа;
 - условия работы барьера должны быть не хуже, указанных в разделе 2 настоящего РЭ;
 - среда, окружающая барьер, не должна содержать примесей, вызывающих коррозию его деталей.
- 11.4. Внешние соединения барьеров при монтаже осуществлять в соответствии со схемой, приведенной на рис. 3 настоящего РЭ.
- 11.5. В местах установки барьеров должны быть приняты меры, исключающие появление либо постоянное действие различного рода помех от работы силового электрооборудования.

Внимание! При работе с винтами клеммных колодок барьеров необходимо использовать отвертки слесарномонтажные с прямым шлицем (ГОСТ 24437-93) Тип 4 или Тип 6 (Исполнения В или С) с шириной рабочей части b 2,5-3 мм.

12. ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ ПРИ ЭКСПЛУАТАЦИИ БАРЬЕРОВ

- 12.1. К эксплуатации барьеров должны допускаться лица, изучившие настоящую инструкцию и прошедшие необходимый инструктаж.
- 12.2. При эксплуатации барьеров необходимо выполнять все мероприятия в полном соответствии с разделами 9, 10 настоящего РЭ. При этом необходимо руководствоваться настоящим руководством, ПУЭ, и другими нормативными документами, определяющими эксплуатацию взрывозащищенного электрооборудования.
- 12.3. При эксплуатации барьеры должны подвергаться систематическому внешнему и периодическому осмотрам.
 - 12.4. При внешнем осмотре барьеров необходимо проверить:
 - 1) отсутствие обрыва или повреждения изоляции соединительных проводов;
 - 2) надежность крепления проводов в клеммных колодках барьера;
 - 3) отсутствие видимых механических повреждений, а также пыли и грязи на корпусе барьера.

КТЖП.425624.001 РЭ

- 12.5. Эксплуатация барьеров с повреждениями и неисправностями категорически запрещается.
- 12.6. При профилактическом осмотре должны быть выполнены все указанные работы внешнего осмотра.
- 12.7. Периодичность профилактических осмотров барьеров устанавливается в зависимости от производственных условий, но не реже двух раз в год.
- 12.8. Эксплуатация барьеров должна производиться в соответствии с требованиями настоящего РЭ, гл.3.4. ПЭЭП, а также других инструкций, действующих в данной отрасли промышленности.

13. МЕТОДИКА ПОВЕРКИ

Настоящая методика распространяется на первичную поверку при выпуске из производства, первичную поверку после ремонта и периодическую в процессе эксплуатации.

Межповерочный интервал - 4 года.

- 13.1. Перед включением барьеров убедиться в соответствии их установки и монтажа указаниям, изложенным в разделах 10,11 настоящего РЭ.
 - 13.2. Поверка барьеров включает в себя следующие операции:

Таблица 4

Наименование операции	Обязательнос при по первичной	Раздел методики	
1. Внешний осмотр	Да	Да	13.5
2. Проверка электрической прочности и сопротивления изоляции	Да	Нет	13.7
3. Определение погрешности преобразования входного сигнала	Да	Да	13.8
4. Проверка идентификационных данных программного обеспечения	Да	Да	13.9

- 13.3. При поверке приборов должны использоваться эталонные и вспомогательные средства измерений, удовлетворяющие указанным ниже требованиям и имеющие действующие свидетельства о поверке.
 - 13.4. При проверке электрической прочности и сопротивления изоляции рекомендуется использовать:
 - установку УПУ-10М,
 - мегомметр М4100/3 (напряжение 500 В).

Перечень основного оборудования для поверки:

- вольтметр универсальный цифровой Щ31, 0-10 В, класс точности 0,005/0,001;
- магазин сопротивлений МСР-60М, класс точности 0,2;
- мера электрического сопротивления Р331 100 Ом, класс точности 0,01;
- источник питания постоянного тока Б5-75, 0-50 В,
- омметр Р386.
 - 13.5. При внешнем осмотре должно быть установлено соответствие барьер следующим требованиям:
- барьер не должен иметь дефектов, ухудшающих его внешний вид и препятствующих его применению;
- на поверхности деталей барьера не допускаются трещины и дефекты.

Барьеры, забракованные при внешнем осмотре, дальнейшей поверке не подлежат.

- 13.6. Условия проверки и подготовки к поверке:
- барьер должен быть установлен в рабочее положение;
- температура окружающего воздуха (23 ± 2) °C;
- относительная влажность окружающей среды от 30 до 80 %;
- атмосферное давление от 84 до 106,7 кПа;
- выдержка барьера перед началом испытаний после включения питания должна быть не менее 10 мин.
 - 13.7. Проверка электрической прочности и сопротивления изоляции.
- 13.7.1. Проверку электрического сопротивления изоляции производят между входными и выходными цепями и цепями питания мегаомметром с напряжением постоянного тока 100 В.

Отсчет показаний, определяющих электрическое сопротивление изоляции, проводят по истечении 1 мин после приложения напряжения к испытуемым цепям барьера.

Барьер считается выдержавшим испытание, если сопротивление изоляции соответствует п.3.16.

13.7.2. Проверку электрической прочности изоляции между входными и выходными цепями при нормальных условиях проводят с помощью установки, позволяющей плавно повышать испытательное напряжение от нуля до

 (1500 ± 7.5) В в течение времени от 5 до 20 с (с мощностью на стороне высокого напряжения не менее 0,25 кВА).

Прибор выдерживают под действием испытательного напряжения в течение 1 мин. Затем напряжение снижают до нуля, после чего испытательная установка отключается.

Барьер считается выдержавшим испытание, если во время испытания отсутствовал пробой изоляции.

- 13.8 Определение погрешности преобразования входного сигнала.
- 13.8.1. Поверяемый барьер подключить к приборам согласно схеме, представленной на рис. 4.

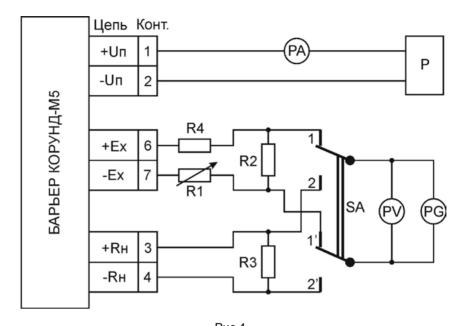


Рис.4 Схема поверки барьера Корунд-М5

PV - цифровой вольтметр (например Щ-31); PG - осциллограф (например С1-55); P - источник питания 24 В (например Б5-7); PA - миллиамперметр (например Ц4341); R1 - магазин сопротивлений MCP-63; R2, R3 - образцовая катушка сопротивлений P-331 100 Ом; R4 – резистор C2-23-0,25-510 Ом; SA - переключатель.

13.8.2. Задать значения входных сигналов на искробезопасных входах в соответствии с данными, приведенными в таблице 5.

Таблица 5

Диапазон	изменения	Диапазон изменения выходного сигнала				
IBX = 4-20 MA		Iвых = 0-5 мA		Iвых = 4-20 мA		
Текущее значение Івх,	Измеряемое значение Uвх,	Расчетное значение выходного сигнала		Расчетное значение выходного сигнала,		
мА	В	мА	В	мА	В	
0,000*	0,000	0,000	0,000	0,000	0,000	
4,0000	0,4000	0,000	0,0000	4,000	0,4000	
8,0000	0,8000	1,250	0,1250	8,000	0,8000	
12,000	1,2000	2,500	0,2500	12,000	1,2000	
16,0000	1,6000	3,750	0,3750	16,000	1,6000	
20,0000	2,0000	5,000	0,5000	20,000	2,0000	

Значения входного сигнала определяются косвенным методом - измерением падения напряжения на образцовых катушках сопротивления.

13.8.2.1. Входной сигнал задается изменением сопротивления магазина R1.

Для измерения входного сигнала переключатель SA1 устанавливается в положение 1-1`.

Величина входного тока I_{BX} определяется из формулы 1:

$$I_{\rm BX} = \frac{U_{\rm BX}}{R_2} \tag{1}$$

где: U_{BX} - входное напряжение, измеряемое на образцовой катушке сопротивления R_2 .

13.8.2.2. Для измерения выходного тока первого канала переключатель SA1 устанавливается в

КТЖП.425624.001 РЭ

положение 2-2`. Выходной ток измеряется по падению напряжения Uвых на образцовой катушке сопротивления R4.

Величина входного тока I_{BMX} определяется из формулы 2:

$$I_{\text{BbiX}} = \frac{U_{\text{BbiX}}}{R_A} \tag{2}$$

где: U_{BHX} - входное напряжение, измеряемое на образцовой катушке сопротивления R_4 .

Величина погрешности преобразования токового сигнала рассчитывается по формуле (3) и не должна превышать 0.1%.

$$\gamma = \frac{I_{\text{Bых.изм.}} - I_{\text{вых. расч.}}}{\Delta I_{\text{вых}}} \cdot 100\%$$
 (3)

где: γ - погрешность передачи сигнала, %;

 $I_{
m BЫX, ИЗМ.}$ — измеренная величина выходного тока, мА (определяется по формуле 2);

 $I_{
m BMX, \ pacy.}$ — расчетная величина выходного тока, мА (см. табл. 5);

 $\Delta I_{ ext{BMX}}$ — диапазон изменения выходного тока, мА.

Погрешность преобразования входного сигнала, вычисленная по формуле (2), не должна превышать значений, указанных в п. 3.11.

13.9. Проверка идентификационных данных программного обеспечения

Проверка идентификационных данных программного обеспечения (ПО) заключается в проверке номера версии ПО. Номер версии ПО указывается в паспорте прибора. Идентификационные данные метрологически значимого ПО

Таблица 6

Наименование ПО	Идентификационное наименование ПО	Номер версии ПО	Цифровой идентификатор ПО	Алгоритм вычисления цифрового идентификатора
Внутреннее ПО	Программа обработки сигналов	M540_№_UNI.dfu	-	-

Барьер признают годным, если номер версии ПО соответствуют данным, приведённым в таблице 6 13.10.Оформление результатов поверки

При положительных результатах поверки оформляется свидетельство о поверке согласно ПР 50.2.006-94. При отрицательных результатах свидетельство о поверке не выдается, а свидетельство о предыдущей поверке аннулируется.

14. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- 14.1. Условия транспортирования барьеров в упаковке предприятия-изготовителя должны соответствовать условиям хранения б по ГОСТ-15150.
- 14.2. Барьеры в упаковке транспортируются всеми видами транспорта в крытых транспортных средствах, в том числе в отапливаемых герметизированных отсеках, в соответствии с документами:
 - "Общие правила перевозки грузов автотранспортом", утвержденные Минавтотрансом РСФСР;
 - "Правила перевозки грузов", издание" Транспорт", Москва;
 - "Правила перевозки грузов", утвержденные Министерством речного флота РСФСР;
 - "Общие специальные правила перевозки грузов", утвержденные Минморфлотом;
- "Руководство по грузовым перевозкам на внутренних воздушных линиях", утвержденные Министерством гражданской авиации;

Во время погрузочно-разгрузочных работ и транспортирования ящики не должны подвергаться резким ударам и воздействию атмосферных осадков. Способ укладки ящиков на транспортирующее средство должен исключать их перемещение.

- 14.3. Срок пребывания барьеров в соответствующих условиях транспортирования не более 3 мес.
- 14.4. Распаковка барьеров в зимнее время производится в отапливаемых помещениях, в которых установлена температура, соответствующая условиям хранения, с выдержкой в ней в течение 6 ч.
- 14.5. Хранение барьеров должно соответствовать условиям хранения 1 по ГОСТ 15150. Ящики могут храниться как в транспортной таре, с укладкой в штабелях до 5 ящиков по высоте, так и без упаковки на стеллажах.